Transepithelial organic anion transport by shark choroid plexus.

نویسندگان

  • Alice R A Villalobos
  • David S Miller
  • J Larry Renfro
چکیده

Spiny dogfish shark (Squalus acanthias) lateral and IV choroid plexuses (CPs) are ultrastructurally similar to the corresponding tissues of rat. However, shark IV CP is proportionally larger and easily accessible. Moreover, this epithelial sheet can be halved and studied in Ussing flux chambers. We have used confocal fluorescence microscopy and radiotracer techniques to characterize transepithelial transport of the organic anions (OAs) fluorescein (FL) and 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, by shark CP. Lateral and IV CP accumulated 1 microM FL, with highest levels in the underlying extracellular spaces, intermediate levels in epithelial cells, and lowest levels in the medium. 2,4-D and probenecid inhibited FL accumulation in cells and extracellular spaces, suggesting that these substrates compete for common carriers. Unidirectional absorptive [cerebrospinal fluid (CSF)-to-blood] and secretory (blood-to-CSF) fluxes of 10 microM [(14)C]2,4-D were measured under short-circuited conditions in IV CP mounted in Ussing chambers. 2,4-D underwent net absorption, with an average flux ratio of 7. Probenecid, 2,4,5-trichlorophenoxyacetic acid, and 5-hydroxyindolacetic acid reduced net absorption, reversibly inhibiting unidirectional absorption, with no effect on secretion. Ouabain irreversibly reduced net 2,4-D absorption and cellular and extracellular accumulation of FL, suggesting energetic coupling of OA absorption to Na(+) transport. Collectively, these data indicate that shark CP actively removes OAs from CSF by a process that is specific and active.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transepithelial organic anion transport across shark choroid plexus

Spiny dogfish shark (Squalus acanthias) lateral and IVth choroid plexuses (CP) are ultrastructurally similar to the corresponding tissues of rat. However, shark IVth CP is proportionally larger and easily accessible. Moreover, this epithelial sheet can be halved and studied in Ussing flux chambers. We have characterized transepithelial transport of the organic anions, fluorescein (FL) and 2,4-d...

متن کامل

Trimethylamine oxide suppresses stress-induced alteration of organic anion transport in choroid plexus.

The effect of physicochemical stress on organic anion transport across the vertebrate blood-cerebrospinal fluid (CSF) barrier in the presence and absence of an endogenous cytoprotectant, trimethylamine oxide (TMAO), was investigated in isolated IVth choroid plexus (CP) of spiny dogfish shark (Squalus acanthias), an animal with naturally high levels of TMAO ( approximately 70 mmol l(-1)). Active...

متن کامل

Texas Red transport across rat and dogfish shark (Squalus acanthias) choroid plexus.

Confocal microscopy and image analysis were used to compare driving forces, specificity, and regulation of transport of the fluorescent organic anion, Texas Red (sulforhodamine 101 free acid; TR), in lateral choroid plexus (CP) isolated from rat and an evolutionarily ancient vertebrate, dogfish shark (Squalus acanthias). CP from both species exhibited concentrative, specific, and metabolism-dep...

متن کامل

Confocal imaging of organic anion transport in intact rat choroid plexus.

We used confocal microscopy and quantitative image analysis to follow the movement of the fluorescent organic anion fluorescein (FL) from bath to cell and cell to blood vessel in intact rat lateral choroid plexus. FL accumulation in epithelial cells and underlying vessels was rapid, concentrative, and reduced by other organic anions. At steady state, cell fluorescence exceeded bath fluorescence...

متن کامل

Fluorescein-methotrexate transport in dogfish shark (Squalus acanthias) choroid plexus.

The vertebrate choroid plexus removes potentially toxic metabolites and xenobiotics from cerebrospinal fluid (CSF) to blood for subsequent excretion in urine and bile. We used confocal microscopy and quantitative image analysis to characterize the mechanisms driving transport of the large organic anion, fluorescein-methotrexate (FL-MTX), from bath (CSF-side) to blood vessels in intact lateral c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 282 5  شماره 

صفحات  -

تاریخ انتشار 2002